If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x^2-100x+160=0
a = -10; b = -100; c = +160;
Δ = b2-4ac
Δ = -1002-4·(-10)·160
Δ = 16400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16400}=\sqrt{400*41}=\sqrt{400}*\sqrt{41}=20\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20\sqrt{41}}{2*-10}=\frac{100-20\sqrt{41}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20\sqrt{41}}{2*-10}=\frac{100+20\sqrt{41}}{-20} $
| 57+7x=9x+7x9 | | -14(1+3x)+7(2x+7)=91 | | 2^n=50 | | 12r+12r+8=56 | | 9x=(x+2) | | -14(1+2x)-(5-5x)=27 | | 9x=(x+2 | | 47+18.25x=22+24.5x | | 64=9v-9 | | 56= 32+8y | | 56=56=56= 32+8y | | 10x^2-100x+160=Y | | -x=7x | | 4x-12+3x+6=6 | | c/8=13/20 | | u/2-7=-5 | | 2(2×+6y)=11 | | 46+23=46x+23 | | 9.05r=27.25 | | -46+-23=46x+23 | | 18+6x-12=-4(2-x)=9x | | u/3-11=20 | | 16^2+8t+70=0 | | 13+4a+2a=+1 | | 16t^+8t+70=0 | | x+91+46=180 | | 3k-5/5=16 | | 10x+22=62 | | 4x+6x=2(x-1)+2 | | 10=10u-5u | | 140/x=2 | | 2+13x=15x+10 |